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Abstract

This paper considers the fundamental problem of how to shape rectangular high-conductivity inserts (fins) that are

mounted on the rim of and protrude into a disc-shaped body that generates heat. The objective is to minimize the global

thermal resistance by optimizing geometrically the distribution of a fixed amount of high-conductivity material through

the material of lower conductivity. In addition to the fin geometry, three other design parameters are considered: the

ratio between the high conductivity and low conductivity ~k, the relative amount of high conductivity material /, and the

number of sectors of the disc-shaped body, N . It is shown analytically and numerically that the thermal resistance can

be minimized with respect to the fin aspect ratio, k. The optimized geometry and performance are reported graphically

as functions of ~k, / and N . Good agreement is found between the analytical solution and the numerical results.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Constructal theory and design [1–3] serves as a re-

minder that flow systems that must be designed (con-

figured) must be treated as malleable, i.e., as morphing

structures that are as free to change as possible. Con-

figurations that are postulated (assumed) based on past

practice, handbooks and rules of thumb, are not neces-

sarily the best. The only rule of thumb worth remem-

bering is that geometry must not be taken for granted.

Geometry matters, in fact, geometry is a result, not an

assumption. It is geometry that endows the flow system

with the ability to serve its purpose, in spite of the

constraints.
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The field of heat transfer has demonstrated for many

years how the principle of generating flow geometry

works. First and foremost, this principle is one about

objective: the need to make things compact, to use the

available space to the maximum. The oldest and best

documented subfield of heat transfer where the genera-

tion of geometry is documented is the geometric opti-

mization of fins [4–11]. This activity is reviewed in a

recent treatise [12].

In this paper we address a practical problem, which

occurs in several domains, for example, in the cooling

of electronic packages and the enhancement of heat

transfer in packed bed heat exchangers. The problem is

how to cool from the outside a space in which heat is

generated volumetrically. The generation of heat can be

due to Joule heating, as in the case of packages of

electronics, or it can be due to convection, as in the flow

of a hot gas through a packed bed.

Two recent studies [13,14] have shown how to facil-

itate the removal of the generated heat when the heat
ed.
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Nomenclature

D fin width, m

k0 disc thermal conductivity, Wm�1 K�1

kp fin thermal conductivity, Wm�1 K�1

L fin length, m

N number of sectors

q0 total heat transfer current, Wm�1

q00 heat flux, Wm�2

q000 heat generation, Wm�3

R disc radius, m

Rth global thermal resistance, mKW�1

t disc thickness, m

T temperature, K

Tc disc center temperature, K

Th rim temperature, K

Tmax hot spot temperature, K

Tmin fin root temperature, K

x, y Cartesian coordinates, m

~y dimensionless fin length

Greek symbols

a angle, rad

e error criterion

k fin aspect ratio

n length variable, m

/ fin fraction area

Subscripts

max maximum

min minimum

Superscript

(�) dimensionless variables
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sink is located in the center of a disc-shaped volume. In

such cases, it is advantageous to install high-conductiv-

ity inserts that extend radially away from the disc center,

and bifurcate before they reach the perimeter. Tree-

shaped inserts and fins have been optimized in this

fashion, and their architecture promises to be more

attractive and more complex as the heat generating

volumes become larger.

In the present paper we consider the related problem

where cooling is available on the outside of the heat

generating disc. Instead of high-conductivity trees

growing away from the center, we explore the idea of

installing high-conductivity inserts that extend inward

from the disc perimeter. We optimize the geometry of

such populations of inserts analytically and numerically.
Fig. 1. Disc with uniform heat generation and high-conduc-

tivity blades extending inward from the rim.
2. Analytical formulation

A disc of fixed radius R and thermal conductivity k0
generates heat at the rate q00 per unit area. The generated
heat current ðq ¼ q00pR2Þ is removed through N radial

fins of much higher conductivity ðkpÞ. As shown in Fig.

1, the fins are positioned equidistantly on the disc

perimeter, and extend inward. Each fin has the length L
and thickness D. The amount of kp material is fixed. This

constraint can be expressed in terms of the fixed area

fraction occupied by kp material on the disc,

/ ¼ DLN
pR2

ð1Þ

The geometry of the distribution of fin material is

represented fully by the elemental sector isolated in Fig.

2. The sector contains one kp fin and the k0 material
allocated to that fin. The configuration has two degrees

of freedom, the fin aspect ratio

k ¼ L
D

ð2Þ

and the angle

a ¼ 2p
N

ð3Þ

The following analysis is valid in the limit

a � 1 / � 1 k0 � kp ð4Þ

in which the sector is approximated by an isosceles tri-

angle (Fig. 2). In this limit, conduction through the fin is

oriented radially, and conduction through the material

adjacent to the fin is oriented azimuthally.



Fig. 2. Triangular model of one of the N sectors of the disc cross-section.
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The objective is to find the optimal configuration

ða; kÞ such that the total heat current generated by the

sector per unit of disc thickness,

q0 ¼ q000
a
2
R2 ð5Þ

encounters minimal thermal resistance. The global

temperature difference that drives the heat flow is

Tmax � Tmin, where Tmax is the hot spot temperature, and

Tmin is the temperature of the root of the fin. The rest of

the disc perimeter is insulated. When the sector is very

slender, the likely location of the hot spot is in the center

of the disc, Tc. When the sector is not sufficiently slender,

the hot spot may occur on the perimeter at the midpoint

between two adjacent fin roots, Th. In the following

analysis we investigate both possibilities,

Tmax ¼ maxðTc; ThÞ ð6Þ

The global thermal resistance to be minimized is

Rth ¼
Tmax � Tmin

q0
ð7Þ

A relatively simple analytical solution is possible

based on the geometrical observation that the tip of the

fin receives the heat current generated by the wedge of

length R� L and angle a,

q0tip ¼ q000
a
2
ðR� LÞ2 ð8Þ

As shown in the lower part of Fig. 2, the fin receives at

every longitudinal position x the heat current collected in

the x ¼ constant plane in the k0 material, namely q00 dx,
where
q00 ¼ q000½aðR� Lþ xÞ � D� ð9Þ

Conduction along the fin is described by

d

dx

�
� kpD

dT
dx

�
¼ q00 ð10Þ

Eliminating q00 between Eqs. (9) and (10), integrating

twice, and invoking the boundary conditions

�kpD
dT
dx

����
x¼0

¼ q0tip ð11Þ

T ¼ Tmin at x ¼ L ð12Þ

we obtain the temperature distribution along the fin,

T ðxÞ. Finally, by writing T0 ¼ T ð0Þ, we find the end-to-

end temperature difference

T0 � Tmin ¼
q000

kpD
a
2
ðR

�
� LÞLRþ a

6
L3 � D

2
L2

�
ð13Þ

Next is the calculation of the temperature drop from

the center ðTcÞ to the fin tip ðT0Þ. Conduction in the

wedge of length ðR� LÞ and material k0 is described by

q0� ¼ �k0an
dT
dn

ð14Þ

dq0�
dn

¼ anq000 ð15Þ

Eliminating q0� between Eqs. (14) and (15), integrating

twice, and invoking the boundary conditions T ¼ Tc at

n ¼ 0, and T ¼ T0 at n ¼ R� L, we find the temperature

difference



Fig. 3. The optimal fin length determined in Eq. (29).
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Tc � T0 ¼
q000

4k0
ðR� LÞ2 ð16Þ

The overall temperature difference between the disc

center and the fin root ðTc � TminÞ is the sum of Eqs. (13)

and (16). With this and Eq. (7) we construct the

dimensionless global thermal resistance

eRc ¼
Tc � Tmin

q0=k0
ð17Þ

which assumes the form

eRc ¼
k
~k

1

"
� L
R
þ 1

3

L
R

� �2
#

þ 1

2a
1

"
� 2

L
R
þ 1

�
� 2

~k

�
L
R

� �2
#

ð18Þ

The ratio L=R is given by the / constraint Eq. (1), which

after using Eqs. (2) and (3) yields

L
R
¼ a

2
/k

� �1=2

ð19Þ

The global conductance eRc emerges as a function of the

two degrees of freedom of the configuration or ða; L=RÞ,
and the specified construction parameters ð/; ~kÞ, where

~k ¼ kp
k0

� 1 ð20Þ

The preceding analysis is valid when Eq. (4) hold,

and when the fin is thin enough so that it fits completely

inside the slender sector. This last condition requires

D < aðR� LÞ ð21Þ

which in view of Eq. (19) means

1

�
þ 1

ak

�
a
2
/k

� �1=2

< 1 ð22Þ

Finally, we must account for the possibility that the

hot spot is not in the center ðTcÞ, but on the rim ðThÞ. The
temperature difference ðTh � TminÞ must be compared

with ðTc � TminÞ, and the larger of the two must be

minimized. The larger of the two is the global temper-

ature difference Tmax � Tmin that appears in the Rth defi-

nition, Eq. (7). Consider the generation of heat ðq000Þ on
the rim, on the short arc of length ða=2ÞR the ends of

which are at temperatures Th and Tmin, Fig. 2. The points

on this arc generate the heat current

q00 ¼ q000
a
2
R ð23Þ

which arrives at the Tmin root of the fin,

q00 ¼ k0
dT
dy

����
y¼0

ð24Þ
The y coordinate is measured from y ¼ 0 where T ¼
Tmin. Because of the uniformly distributed heat genera-

tion rate q000, the temperature distribution is parabolic

versus y, with zero slope at y ¼ ða=2ÞR, where T ¼ Th.
One can show that the slope at y ¼ 0 is

dT
dy

����
y¼0

¼ 2
Th � Tmin

ða=2ÞR ð25Þ

By combining Eqs. (23)–(25), we find the largest tem-

perature excursion on the rim,

Th � Tmin ¼ q000
a2R2

8k0
ð26Þ

and the corresponding dimensionless thermal resistance

defined as in Eq. (17),

eRh ¼
Th � Tmin

q0=k0
¼ a

4
ð27Þ

In summary, the objective is to minimize the larger of

the thermal resistances derived in Eqs. (18) and (27),eR ¼ maxðeRc; eRhÞ ð28Þ

by varying a and k, subject to condition Eq. (22) and

fixed / and ~k. Analytically, it is more convenient to start

with Eqs. (18) and (19), express eRc as a function of a and
L=R as free variables, and solve oeRc=oðL=RÞ ¼ 0 to

determine the optimal fin length ratio L=R. The result is
given implicitly by

2

/~k
2~y

�
� 3~y2 þ 4

3
~y3
�
þ 1

�
� 2

~k

�
~y ¼ 1 ð29Þ

where ~y ¼ ðL=RÞopt. The optimal fin length is indepen-

dent of a, but depends on ~k and /. While trying several

plots of ðL=RÞopt versus ~k for several values of /, we
found that the curves fall almost on top of each other if

we use the group ~k/ on the abscissa. As shown in Fig. 3,

the product ~k/ captures most of the effect of ~k and / on



Fig. 4. The minimized global thermal resistance corresponding

to the optimal fin length reported in Fig. 3.
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ðL=RÞopt. The S-shaped bundle of curves shows a tran-

sition when ~k / is in the range 1–10. When ~k/ is smaller

than 1, we see that ðL=RÞopt ! 0, and the fins disappear.

When ~k/ is greater than 10, the behavior is ðL=RÞopt !
1, and the fin tips almost touch in the center of the disc.

The minimized eRc function that corresponds to Eq.

(29) and Fig. 3 is proportional to 1=a. This is why it is

reported in Fig. 4 as aeRc;min versus ~k and /. Again, we

found that the curves almost collapse on a single curve if

we use the product ~k/ on the abscissa. The transition is

again marked by the range 1 < ~k/ < 10. The highest

resistance ðaeRc;min ¼ 0:5Þ is when ~k/ < 1, and the fins

disappear. The lowest resistance ðaRc;min ¼ 0Þ is ap-

proached in the limit where ~k/ much greater than 10.

When we plotted a~Rc;min versus ~k alone (for fixed

values of /), we found that diminishing returns are

registered as the volume fraction of the radial fins /
increases. This means that when ~k is fixed, the reduction

in aeRc;min is greater when / increases from 0.01 to 0.05,

than when / increases from 0.05 to 0.1.

At this point it is important to recall Eqs. (27) and

(28) in order to understand the emphasis placed on the

aeRc;min group in the preceding discussion. From Fig. 4 it

is clear that the highest thermal resistance between the

center of the disc and the fin root is aeRc;min ¼ 0:5.
According to Eq. (27), such a dimensionless thermal

resistance is reached when aeRh;min ¼ 0:5 or a ¼ 21=2,

which would violate the first of Eq. (4). This means that

in the domain where analysis is valid, the hot spot

temperature always occurs in the center of the disc.
3. Numerical formulation

The objective of this second phase of the work was to

calculate and minimize numerically the hot spot tem-

perature on the sector shown in Fig. 2. Two degrees of

freedom were considered: the number of sectors, which
is represented by the angle a, and the aspect ratio of the

fin k ¼ L=D.
The numerical domain was divided in two regions:

the disc material with low conductivity material k0 and

volumetric heat generation q000, and the high-conductiv-

ity plate fin. The conduction in the disc domain is ruled

by

k0r2T ¼ �q000 ð30Þ

For the fin domain, the energy equation reads

kpr2T ¼ 0 ð31Þ

Because of symmetry, all the boundaries of the sector

were modeled as adiabatic oT=on ¼ 0, where n is the

vector normal to the respective boundary. Two different

thermal boundary conditions were imposed on the fin:

constant temperature at the fin root Tmin, and flux con-

tinuity at the interface between the kp fin and the k0 disc.
Neglecting the thermal contact resistance between the

disc and the fin, the heat flux continuity in the interface

is

k0
oT
on

����
disc

¼ kp
oT
on

����
fin

ð32Þ

The nondimensionalization of Eqs. (30)–(32) was made

using the dimensionless variables

ð~x; ~y; eL; eDÞ ¼ ðx; y; L;DÞ
R

; eT ¼ T � Tmin

q000R2=k0
ð33Þ

The steady-state heat conduction problem defined in

Fig. 2 was solved using an available finite elements

code [15]. Triangular elements were used. The grid

was refined in the vicinity of the wedges of the disc,

where high temperature gradients are expected. Grid

accuracy tests were performed for all configurations

reported in this section. The convergence criterion was

based on the comparison of the eTmax results of a less

refined mesh (mesh 1), and a more refined mesh

(mesh 2), until the following convergence criterion was

satisfied

e ¼
eTmaxðmesh 1Þ � eTmaxðmesh 2ÞeTmaxðmesh 2Þ

�����
�����6 0:001 ð34Þ

Fig. 5 shows the variation of the maximum temperature

on the disc versus the aspect ratio of the fin for fixed

values of / and N (or a). An immediate conclusion is

that the optimization of the fin aspect ratio is useful

because the curves for ~k > 10 are not flat. Minimum

values of eTmax are obtained for fins with high aspect

ratios, i.e., k � 1. Another important feature presented

in Fig. 5 is the effect of the conductivity ratio on eTmax:

diminishing returns are reached as ~k increases.

Fig. 6 shows the effect of the fin volume fraction /
on eTmax. The disc thermal resistance decreases as the



Fig. 6. Numerical minimization of the global thermal resistance

with respect to the fin aspect ratio: the effect of /.

Fig. 5. Numerical minimization of the global thermal resistance

with respect to the fin aspect ratio: the effect of k ¼ kp=k0.

Fig. 8. The minimized global thermal resistance determined

numerically.
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slenderness and the area fraction of the fin increase.

Diminishing returns are also evident as / increases.

Fig. 7 shows that the optimal fin aspect ratio kopt
increases with the number of sectors for the three values
Fig. 7. The optimal fin length determined numerically.
of ~k considered. It is worth mentioning that for N P 50

the optimal fin length was practically constant, and de-

pends only on ~k. This means that the behavior presented

in Fig. 7 is mainly due to the reduction in the fin

thickness eDopt as the number of sectors increases. This

trend was predicted analytically in Eq. (29).

Fig. 8 shows that the minimized global resistance

ðeTmaxÞmin decreases as the number of optimized sectors

increase. Although there is no optimal number of sec-

tors, the ðeTmaxÞmin curves become horizontal at large

values of N . In this limit, the minimized global con-

ductance is independent of the number of sectors on the

disc.
4. Conclusions

In this paper we showed analytically and numerically

that the geometry of rectangular high-conductivity in-

serts in a disc-shaped body that generates heat at every

point can be optimized for minimal thermal resistance.

In addition, we showed that the optimal design is highly

dependent on the construction parameters N , / and ~k.
These developments reinforce the main line of the con-

structal method, which holds that the maximization of

flow access (e.g., heat, fluid, etc.) subject to global con-

straints is the mechanism that generates the flow archi-

tecture.

An important question is whether the analytical

solution agrees with the numerical results. Fig. 9 shows

the comparison between the analytical solution of the

optimal fin length, Eq. (29), and the numerical results

when the disc has one hundred fins. In spite of the

simplicity of our analytical model, the agreement is good

in an order of magnitude sense, especially when ~k �
100, regardless of /. In this limit ðL=RÞopt approaches 1.
For low ~k values, ~k � 100, the numerical results are

insensitive to ~k especially at sufficiently high /P 0.05.



Fig. 9. Optimal fin lengths: comparison between the analytical

solution and the numerical results.

Fig. 10. Minimal thermal resistances: comparison between the

analytical solution and the numerical results.
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In the same limit, the analytical solution behaves dif-

ferently. The reason is that the analytical solution is

valid only when Eq. (4) holds. For / ¼ 0:01, the

numerical and analytical results exhibit similar trends.

Fig. 10 shows a comparison between the numerical

results and the analytical solution for the minimal

thermal resistance aeRc;min. The agreement is good in the

range 10 < ~k < 1000 and 0:01 < / < 0:1. The two

solutions agree much better as ~k increases. This is con-

sistent with assumptions Eq. (4), which indicate the

range of validity of the analytical solution.
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